Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Environ Res ; 212(Pt D): 113493, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907003

ABSTRACT

To examine the short-term association between gaseous air pollutants (CO, NO2, SO2, and O3) and all-cause respiratory disease, acute upper respiratory infections (AURIs) as well as acute lower respiratory infections (ALRIs) among children, we conducted the study from 25 major cities in China. Hospitalization records of children aged 0-18 years due to all-cause respiratory diseases (889,926), AURIs (97,858), and ALRIs (642,154) from 2016 to 2019 were extracted. Concentrations of CO, NO2, SO2, and O3 were averaged across monitoring stations. Generalized additive models were used to estimate the associations between gaseous air pollutants and daily hospitalizations for all-cause respiratory disease, AURIs, and ALRIs. The meta-analysis was used to combine the city-specific estimates. A 10 mg/m3 increase in CO at lag01, and a 10 µg/m3 increase in NO2, SO2, and O3 at lag01 were associated with 1.65% (95%CI, 0.41-2.91), 0.54% (95%CI, 0.30-0.79), 0.60% (95%CI, 0.22-0.99), and 0.23% (95%CI, 0.06-0.39) increase of hospitalizations due to all-cause respiratory disease, respectively. For the disease subtype, O3 only had adverse effects on AURIs, CO and SO2 mainly on ALRIs, and NO2 on both AURIs and ALRIs. Children aged 4-6years were more vulnerable to the effects of CO and NO2, but those aged <1year were more susceptible to SO2 and O3. Besides, the O3 effect was stronger in the warm season than in the cold season. The study indicated that short-term exposure to CO, NO2, SO2, and O3 was associated with increased hospitalization for pediatric respiratory disease, and the association may vary by position of the respiratory tract, age, and season.


Subject(s)
Air Pollutants , Air Pollution , Respiration Disorders , Respiratory Tract Infections , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Child , China/epidemiology , Cities/epidemiology , Gases/analysis , Hospitalization , Humans , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Particulate Matter/analysis , Respiratory Tract Infections/chemically induced , Respiratory Tract Infections/epidemiology , Time Factors
2.
Int J Hyg Environ Health ; 231: 113638, 2021 01.
Article in English | MEDLINE | ID: covidwho-865729

ABSTRACT

Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O3, were significantly associated with increased hospital admissions for respiratory disease. Each 10 µg/m3 increase in PM2.5, SO2 and NO2 at lag 07, PM10 at lag 03 and per 1 mg/m3 increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM2.5 and SO2 in Guangzhou, SO2, NO2 and CO in Wuhan, as well as SO2 and NO2 in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM2.5 in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM2.5, SO2 and NO2. Furthermore, with the exception of O3, the associations were stronger in cold season than in warm season. Short-term exposure to PM2.5, SO2, NO2 and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM2.5 held even at exposure levels below the current CAAQS Grade II in certain cities.


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Infections , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Child , China/epidemiology , Cities , Hospitalization , Hospitals , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Respiratory Tract Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL